
Uppaal { Present and Future

1

Gerd Behrmann, Kim G. Larsen

Basi Researh in Computer Siene, Aalborg University, Denmark

Oliver M�oller

Basi Researh in Computer Siene, Aarhus University, Denmark

Alexandre David, Paul Pettersson, Wang Yi

Department of Information Tehnology, Uppsala University, Sweden

Abstrat

Uppaal is a tool for modelling, simulation and veri�a-

tion of real-time systems, developed jointly by BRICS

at Aalborg University and the Department of Com-

puter Systems at Uppsala University. The tool is ap-

propriate for systems that an be modelled as a ol-

letion of non-deterministi proesses with �nite on-

trol struture and real-valued loks, ommuniating

through hannels or shared variables. Typial applia-

tion areas inlude real-time ontrollers and ommuni-

ation protools in partiular, those where timing as-

pets are ritial. In this paper, we review the status

of the urrently distributed version of the tool as well

as failities to be found in upoming releases.

1 Current Version of Uppaal

1.1 Bakground

Uppaal [LPY97℄ onsinsts of three main parts: a de-

sription language, a simulator and a model heker.

The desription language is a non-deterministi

guarded ommand language with real-valued lok

variables and simple data types. It serves as a mod-

elling or design language to desribe system behavior

as networks of automata extended with lok and data

variables. The simulator is a validation tool whih en-

ables examination of possible dynami exeutions of a

system during early design (or modelling) stages and

thus provides an inexpensive mean of fault detetion

prior to veri�ation by the model heker whih ov-

ers the exhaustive dynami behaviour of the system.

The model heker is to hek invariant and bounded-

liveness properties by exploring the symboli state-

spae of a system, i.e., reahability analysis in terms

of symboli states represented by onstraints.

Sine the �rst release of Uppaal in 1995, the tool has

been further developed by the teams in Aalborg and

1

This work is partially supported by the European Commu-

nity Esprit-LTR Projet 26270 VHS (Veri�ation of Hybrid sys-

tems), and the AIT-WOODDES Projet No IST-1999-10069.

0

5

10

15

20

25

30

35

40

2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18

S
pa

ce
 (

M
b)

Version

Philips Protocol with Collision Handling
Start-up of TDMA Protocol

Fischer’s Protocol

Figure 1: Spae (in Mb) benhmarks for Uppaal ver-

sion 1.99 to 2.19. Version 1.99 and 2.19 are

dated Deember 1996 and September 1998 re-

spetively. All tool versions were ompiled with

g 2.7.2.3 and exeuted on the same Pentium

II 375 MHz mahine.

Uppsala. Figure 1 illustrates how this has a�eted the

performane of the tool in terms of three examples from

the literature. The diagram shows how the spae and

time requirements of Uppaal improved in the period

Deember 1996 to September 1998 when ompiled with

the same ompiler and exeuted on the same mahine.

The time redution is similar [Pet99℄.

In July 1999 a new version of Uppaal, alled Up-

paal2k, was released. The new version, whih re-

quired almost two years of development, is designed

to improve the graphial interfae of the tool, to al-

low for easier maintenane, and to be portable to

the most ommon operating systems while still pre-

serving Uppaal's ease-of-use and eÆieny. To meet

these requirements the new version is designed as a

lient/server appliation with a veri�ation server pro-

viding eÆient C++ servies to a Java lient over

a soket based protool. This design also makes

it possible to exeute the server and the GUI on

two di�erent mahines. Uppaal2k is urrently avail-

able for Linux, SunOS and MS Windows platforms.

p. 1

It an be downloaded from the Uppaal home page

http://www.uppaal.om/. Sine July 1999, the tool

has been downloaded by more than 800 di�erent users

in 60 ountries.

1.2 GUI

The new GUI, shown in Figure 2, has new interfaes

for the three main tool omponents of Uppaal, i.e.,

the system editor, the simulator and the veri�er. Be-

ing integrated in one ommon interfae, the three tools

now have more uniform interfaes ompared to previ-

ous Uppaal versions. The three tools operate on the

same internal system model whih makes exhange of

information between the tools easier, e.g., loading a

diagnosti trae generated by the veri�er into the sim-

ulator for further inspetion. In addition, several new

funtionalities have been implemented in the tool. For

example, the new system editor has been tailored and

extended for the new system desription language of

Uppaal2k (see below), the simulator has been modi-

�ed to allow the user to on�gure the level of details

to be displayed of the simulated system, and the veri�-

ation interfae has been enrihed with a requirement

spei�ation editor whih stores the previous veri�a-

tion results of a logial property until the property or

the system desription is modi�ed.

The new Uppaal version also has a riher modelling

language than its predeessors. The new language sup-

ports proess templates and more omplex (bounded)

data strutures, suh as data variables, onstants, ar-

rays et. A proess template in the new language is a

timed automaton extended with a list of formal param-

eters and a set of loally delared loks, variables and

onstants. Typially, a system desription will on-

sist of a set of instanes of timed automata delared

from the proess templates, and of some global data,

suh as global loks, variables, synhronisation han-

nels et. In addition, automata instanes may also be

de�ned from templates re-used from existing system

desriptions. Thus, the adopted notion of proess tem-

plates (partiularly when used in ombination with the

possibility to delare loal proess data) allows for on-

venient re-use of existing models.

1.3 Veri�er

A main fous of the Uppaal projet is to develop ef-

�ient algorithms and data strutures for the veri�a-

tion of timed systems. The new veri�ation server of

Uppaal2k ontains some reent developments in this

area (though some of the implementations are not yet

available in the publi version).

In two reent papers [BLP

+

99, LWYP99℄, Behrmann

et al presents a new data struture alled Clok Di�er-

ene Diagrams, CDDs. The new struture is BDD-like

(it allows for sharing of isomorphi sub trees) but in-

tended for representing and eÆiently manipulating the

non onvex subsets of the Eulidean spae enountered

during veri�ation of timed automata. The CDDs have

been implemented in Uppaal to perform the symboli

state-spae exploration instead of the normally used

data struture, alled DBMs. In an experiment where

the tool was applied to eight industrial examples, the

spae savings using CDDs were between 46% and 99%

with moderate inrease in run time.

Another paper [LNAB

+

98℄ desribes a new veri�ation

tehnique alled Compositional Bakwards Reahabil-

ity, CBR. The tehnique uses ompositionality and de-

pendeny analysis to improve the eÆieny of symboli

model heking of state/event models. In an untimed

setting, the tehnique has made possible automati ver-

i�ation of very large industrial design. For example a

system with 1421 onurrent mahines was heked in

less than 20 minutes on a standard PC. An implemen-

tation of this tehnique for timed systems is urrently

under development and has already proved its applia-

bility on some benhmark examples.

The Uppaal2k veri�ation server has also been ex-

tended with some veri�ation tehniques desribed

elsewhere in the literature. The urrent version sup-

ports the bit-state hashing under-approximation teh-

nique whih has been suessfully used in the model-

heking tool SPIN for several years. A tehnique for

generating an over-approximation of a system's reah-

able state-spae based on a onvex-hull representations

of onstraints is also supported. Finally, an abstration

tehnique based on (in-)ative lok redutions is avail-

able.

1.4 Case Studies

Uppaal2k has been applied in several ase studies. In

this setion we briey desribe some of the major and

more reent ase studies performed.

In an ongoing ase study [AJ01℄, Uppaal is applied to

model and analyze a generalized version of a ar lok-

ing system developed by Saab Automobile. The loking

system is distributed over several nodes in the internal

ommuniation network that exists in all modern vehi-

les. The system onsists of a entral node gathering

information and based on this instruting sub nodes at-

tahed to the physial hardware to lok or unlok doors,

trunk lid, et. The input soures are di�erent kinds of

remote ontrollers, speed sensors, automati re-loking

timeouts et., whih based on prede�ned rules may a-

tivate the loking mehanism. The model of the sys-

tem is derived from the atual funtional requirements

of the loking system used at Saab Automobile. Dur-

ing the urrently ongoing work with verifying the fun-

tional requirements of the model, some inonsistenies

and other problems between requirements have been

found and pointed out to the engineers.

p. 2

Figure 2: Uppaal2k on sreen.

In [DY00℄, David and Wang report on an industrial

appliation of Uppaal to model and debug a om-

merial �eld bus ommuniation protool, AF100 (Ad-

vant Field-bus 100) developed and implemented by the

proess ontrol industry for safety-ritial appliations.

The protool has been running in various industrial en-

vironments over the world for the past ten years. Due

to the omplexity of the protool and various hanges

made over the years, it shows oasionally unexpeted

behaviours. During the ase study, a number of imper-

fetions in the protool logi and its implementation are

found and the error soures are debugged based on ab-

strat models of the protool; respetive improvements

have been suggested.

In [HLP00℄, Hune et al. addresses the problem of syn-

thesising prodution shedules and ontrol programs

for the bath prodution plant model built in LEGO
MINDSTORMS

TM

RCX

TM

. A timed automata model

of the plant whih faithfully reets the level of ab-

stration needed to synthesise ontrol programs is de-

sribed. This makes the model very detailed and om-

pliated for automati analysis. To solve this prob-

lem a general way of adding guidane to a model by

augmenting it with additional guidane variables and

transition guards is presented. Applying the tehnique

makes synthesis of ontrol problems feasible for a plant

produing as many as 60 bathes. In omparison, only

two bathes ould be sheduled without guides. The

synthesized ontrol programs have been exeuted in the

plant. Doing this revealed some model errors. The pa-

pers [Hun99, IKL

+

00℄ also onsider systems ontrolled

by LEGO RCX

TM

briks. Here the studied problem

is that of heking properties of the atual programs,

rather than abstrat models of programs. It is shown

how Uppaal models an be automatially synthesized

from RCX

TM

programs, written in the programming

language Not Quite C, NQC. Moreover, a protool to

failitate the distribution of NQC programs over several

RCX

TM

briks is developed and proved to be orret.

The developed translation and protool are applied to

a distributed LEGO system with two RCX

TM

briks

pushing boxes between two onveyer belts moving in

opposite diretions. The system is modelled and some

veri�ation results with Uppaal2k are reported.

In [KLPW99℄, Kristo�ersen et. al. present an analysis

of an experimental bath plant using Uppaal2k. The

plant is modelled as a network of timed automata where

automata are used for modelling the physial ompo-

nents of the plant, suh as the valves, pumps, tanks

et.

2 Reent Developments in Uppaal

Several researh ativities are onduted within the

ontext of Uppaal. In partiular, extensions of the

tool to allow for parametri models [HRSV℄, probabilis-

ti models and hybrid system models [CL00℄ have been

or are under investigation. Also, the state-explosion

problem, whih is even more severe in the ontext

of real-time, has been subjet to substantial researh.

Beside the already desribed BDD-like datastruture

CDD [BLP

+

99, LWYP99℄, real-time extensions of the

p. 3

partial order redution tehnique have been suggested

[BJLY98℄. The researh results most likely to be found

in versions to be released shortly will be desribed in

somewhat more detail in the following setions.

2.1 Distributed Uppaal

Real time model heking is a time and memory on-

suming task, quite often reahing the limits of both

omputers and the patiene of users. An inreasingly

ommon solution to this situation is to use the om-

bined power of normal omputers onneted in a lus-

ter. Good results have reently been ahieved for Up-

paal by distributing both the model heking algo-

rithm and the main data strutures [BHV00℄.

At the ore of Uppaal we �nd a state-spae explo-

ration algorithm. In prinipal, we might think of this

as a variation of searhing the states (nodes) of an ori-

ented graph. For this, two data strutures are responsi-

ble for the potentially huge memory onsumption. The

�rst { the Waiting list { ontains the states that have

been enountered by the algorithm, but have not been

explored yet, i.e., the suessors have not been deter-

mined. The seond { the Passed list { ontains all

states that have been explored. The algorithm takes

a state from the Waiting list, ompares it with the

Passed list, and in ase it has not been explored, the

state itself is added to the Passed list while the su-

essors are added to the Waiting list.

The distributed version of this algorithm is similar.

Eah node (proessing unit) in the luster will hold

fragments of both theWaiting list and the Passed list

aording to a distribution funtion mapping states to

nodes. In the beginning, the distributed Waiting list

will only hold the initial state. What ever node hosts

this state will ompare it to its still empty Passed

list fragment and onsequently explore it. Now, the

suessors are distributed aording to the distribution

funtion and put into the Waiting list fragment on

the respetive nodes. This proess will be repeated,

but now several nodes ontain states in their fragment

of the Waiting list and quikly all nodes beome busy

exploring their part of the state spae. The algorithm

terminates when allWaiting list fragments are empty

and no states are in the proess of being transfered

between nodes.

The distribution funtion is in fat a hash funtion.

It distributes states uniformly over its range and hene

implements what is alled random load balaning. Sine

states are equally likely to be mapped to any node, all

nodes will reeive approximately the same number of

states and hene the load will be equally distributed.

This approah is very similar to the one taken by

[SD97℄. The di�erene is that Uppaal uses symboli

states, eah overing (in�nitely) many onrete states.

In order to ahieve optimal performane, the lookup

performed on the Passed list is atually an inlusion

hek. An unexplored symboli state taken from the

Waiting list is ompared with all the explored sym-

boli states on the Passed list, and only if none of

those states over (inlude) the unexplored symboli

state it is explored. For this to work in the distributed

ase, the distribution funtion needs to guarantee that

potentially overlapping symboli states are mapped to

the same node in the luster. A symboli state an a-

tually be divided into a disrete part and a ontinuous

part. By only basing the distribution on the disrete

part, the above is ensured.

One oddity is that, depending on the searh order,

building the omplete reahable state-spae an result

in varying number of states being explored. Experi-

ments have shown that breadth �rst order is lose to

optimal when building the omplete reahable state-

spae. Unfortunately, ensuring strit breadth �rst or-

der in a distributed setting requires synhronizing the

nodes, whih is undesirable. Instead, we order the

states in eahWaiting list fragment aording to their

distane from the initial state. his results in an approx-

imation of the breadth �rst order. Experiments have

shown that this order drastially redues the number

of explored states ompared to simply using a FIFO

order.

This version of Uppaal has been used on a Sun En-

terprise 10000 with 24 CPUs and on a Linux Beowulf

luster with 10 nodes. Good speedups have been ob-

served on both platforms when verifying large systems

(around 80% of optimal at 23 CPUs on the Enterprise

10000).

2.2 Cost-Optimal Uppaal

Uppaal was initially intended to prove the orretness

of a real time systems with respet to their spei�a-

tion. If a system does not meet the spei�ation Up-

paal �nds an error state and an produe diagnosti

information on how to reah this error state. However,

we often prefer to think of these states as desired goal

states and not as error states. If for example four per-

sons have to ross a bridge that an only arry two per-

sons at a time, one would like to know whether they

an reah the safe side, given additional onstraints

and deadlines. This example extends to bigger sys-

tems from, e.g., the proess industry. It is then often

valuable to know whether it is possible to shedule the

prodution steps suh that all onstraints are met. This

approah was used in [Feh99, HLP00℄ to derive feasible

shedules for a part of a steel plant in Ghent, Belgium,

and a Lego model of this plant, respetively.

Even though it is often hard to �nd a solution, as

soon as a feasible solution is found, one might wonder

whether this is the optimal solution; whether no better

p. 4

solutions exist. To address this problem we inluded

onepts that are well known from branh and bound

algorithms to Uppaal. It is then possible to derive

optimal traes for Uniformly Pried Timed Automata

(UPTA) [BFH

+

℄. In this model the ost inreases with

a �xed rate as time elapses, or with a ertain amount

if a transition is taken. The ost is treated as a spe-

ial lok with extra operations, but suh that we an

still use the eÆient data strutures urrently used in

Uppaal. First results for the steel plant and several

benhmark problems were obtained in [BFH

+

℄, and we

hope to inlude in the next release of Uppaalan option

for deteting optimal traes to goal states.

To be able to �nd time-optimal traes is very useful,

but in many situations we would like to have a more

general notion of ost. To be able to model for exam-

ple mahines that use a di�erent amount of energy per

time unit we proposed the model of Linearly Pried

Timed Automata (LPTA). This model extends timed

automata with pries on all transitions and loations.

In these models, the ost of taking an ation transition

is the prie assoiated with the transition, and the ost

of delaying d time units in a loation is d � p, where p

is the prie assoiated with the loation. The ost of

a trae is simply the aumulated sum of osts of its

delay and ation transitions.

To deal with LPTA we introdue pried zones, whih

assign to a zone a linear funtion that de�nes the mini-

mal ost of reahing a state in that zone. In [BFH

+

00℄

it was shown that given a set of goal states the ost-

optimal trae is omputable. This result is quite re-

markable sine several similar extensions of timed au-

tomata have been proven to be undeidable. But fur-

thermore we now even have a prototype implementa-

tion that allows us to perform the �rst experiments

[LBB

+

01℄.

From �rst attempts that useUppaal to show shedula-

bility for some notorious problems, we have now a gen-

eral model that allows us to �nd a trae with the mini-

mum ost of all traes ending in a set of goal states. In

this approah, the automata based modeling languages

of the veri�ation tools serves as input language. These

modeling languages are very well-suited in this respet,

as they allow for easy and exible modeling of systems

onsisting of several parallel omponents that interat

in a time-ritial manner and onstrain the behavior of

eah other in a multitude of ways.

2.3 Hierarhial Uppaal

Hierarhial strutures are a popular theme in spe-

i�ation formalisms, suh as stateharts [Har87℄ and

UML [BRJ98℄. The main idea is that loations not

neessarily enode atomi points of ontrol, but an

serve as an abbreviation for more omplex behavior.

If a non-atomi loation is entered, this may trigger a

asade of events irrelevant to the level of the system

that is urrently in fous. If a more detailed view is

required, the expliit desription of the sub-omponent

an be found isolated, sine dependenies between the

di�erent levels of hierarhy are restrited.

The immediate bene�t is a onise desription, that

allows a omplex system to be viewed at di�erent

levels of abstration and nevertheless ontains all

information in detail. Moreover, symmetries an

be expressed expliitly: If two sub-omponents A

and B of a super-state S are struturally identi-

al, they may be desribed as instantiations of the

same template (with possibly di�erent parameters).

Copies of states may exist for notational onveniene,

ambiguities are resolved by a unique-name assumption.

We believe that Uppaal an bene�t greatly from these

onepts, sine they support a leaner and more stru-

tured design of large systems. The model an be on-

struted top down, starting with a very abstrat notion

that is re�ned subsequently. The simulator an then be

used to validate that the model oinides with the intu-

ition of the designer. Moreover, it is possible to reason

about the model with arbitrary granularity, sine, e.g.,

safety- and deadlok-properties an be model-heked

at eah stage of modeling. The re�nement relation is

then given by purely strutural information.

A seond|however ambitious|goal is to exploit the

struture in shaping more eÆient model-heking al-

gorithms. Related work [AW99℄ indiates that loal-

ity of information an be exploited straightforward in

reahability analysis. Also, the work in [BKLHLN99℄

indiates that { at least for untimed systems { one

may exploit the hierarhial struture of a system dur-

ing analysis. However, in the setting of Uppaal, this

is more diÆult, sine all parallel proesses impli-

itly synhronize on the passage of time. Approahes

for loal-time semantis [BJLY98℄ have also yet to be

shown to improve veri�ation time in reasonable se-

narios, i.e. where the dependeny between parallel sub-

omponents is low, thus not all interleavings have to

be taken into aount. As a �rst step towards this,

we work on a areful de�nition of hierarhial timed

automata, that support enapsulation and loal de�ni-

tions. In partiular, the synhronization of joins raises

semanti problems that an be resolved in various ways.

Sine some of the design hoies are not obvious at �rst,

ase-studies are planned that orroborate the natural-

ness of this de�nition in omplex examples. A trans-

lation of hierarhial timed automata into a parallel

omposition of at ones serves to readily provide pro-

totypes that an orroborate deisions here or detet

lumsy hoies. This attened system neessarily on-

tains auxiliary onstruts to imitate the behavior of the

hierarhial ones. We expet the ase-studies to give an

p. 5

intuition, whether this translation slak is tolerable.

The design of the hierarhial timed automata is meant

to be lose to UML state-hart diagrams. As for

the real-time aspet, one output of this onsiderations

will be a real-time pro�le

1

, that suggests an exten-

sion of UML formalisms with loks and timed invari-

ants. This work is arried out in the ontext of AIT-

WOODDES projet No IST-1999-10069.

Referenes

[AJ01℄ Tobias Amnell and Pontus Jansson. Report from

aste-rt auto projet | entral loking system ase study.

In preparation., 2001.

[AW99℄ Rajeev Alur and Bow-Yaw Wang. \Next" Heuris-

ti for On-the-y Model Cheking. In Proeedings of the

Tenth International Conferene on Conurreny Theory

(CONCUR'99), LNCS 1664, pages 98{113. Springer-Verlag,

1999.

[BFH

+

℄ Gerd Behrmann, Ansgar Fehnker, Thomas Hune,

Kim Larsen, Paul Pettersson, and Judi Romijn. EÆient

guiding towards ost-optimality in uppaal. To be submit-

ted to TACAS'2001.

[BFH

+

00℄ Gerd Behrmann, Ansgar Fehnker, Thomas

Hune, Kim G. Larsen, Paul Pettersson, Judi Romijn,

and Frits Vaandrager. Minimum-Cost Reahability

for Pried Timed Automata. Submitted for publia-

tion. Available at http://www.dos.uu.se/dos/rtmv/-

papers/bfhlprv-sub00-1.ps.gz., 2000.

[BHV00℄ Gerd Behrmann, Thomas Hune, and Frits Vaan-

drager. Distributing timed model heking { How the searh

order matters. In E. Allen Emerson and A. Prasad Sistla,

editors, Pro. of the 12th Int. Conf. on Computer Aided

Veri�ation, number 1855 in Leture Notes in Computer

Siene, pages 216{231. Springer{Verlag, 2000.

[BJLY98℄ Johan Bengtsson, Bengt Jonsson, Johan Lilius,

and Wang Yi. Partial Order Redutions for Timed Systems.

In Pro. of CONCUR '98: Conurreny Theory, 1998.

[BKLHLN99℄ G. Behrmann, H. Andersen K. Larsen,

H. Hulgaard, and J. Lind-Nielsen. Veri�ation of hierarhi-

al state/event systems using reusability and omposition-

ality. In Pro. of the 5th Conferene on Tools and Algo-

rithms for the Constrution and Analysis of Systems, Le-

ture Notes in Computer Siene. Springer{Verlag, 1999.

[BLP

+

99℄ Gerd Behrmann, Kim G. Larsen, Justin Pear-

son, Carsten Weise, and Wang Yi. EÆient timed reaha-

bility analysis using lok di�erene diagrams. In Pro. of

the 11th Int. Conf. on Computer Aided Veri�ation, Leture

Notes in Computer Siene. Springer{Verlag, 1999.

[BRJ98℄ Grady Booh, James Rumbaugh, and Ivar Jaob-

son. The Uni�ed Modeling Language User Guide. Addison-

Wesley, 1998.

[CL00℄ Fran Cassez and Kim G. Larsen. The impressive

power of stopwathes. In Pro. of CONCUR '2000: Con-

urreny Theory, 2000.

[DY00℄ Alexandre David and Wang Yi. Modelling and

analysis of a ommerial �eld bus protool. In Pro. of

1

A pro�le is the standard formal way to extend UML on-

epts.

12th Euromiro Conferene on Real-Time Systems. IEEE

Computer Soiety Press, June 2000.

[Feh99℄ Ansgar Fehnker. Sheduling a steel plant with

timed automata. In Proeedings of the 6th International

Conferene on Real-Time Computing Systems and Applia-

tions (RTCSA99), pages 280{286. IEEE Computer Soiety,

1999.

[Har87℄ David Harel. Stateharts: A visual formalism for

omplex systems. Siene of Computer Programming, 1987.

[HLP00℄ Thomas Hune, Kim G. Larsen, and Paul Petters-

son. Guided Synthesis of Control Programs Using Uppaal.

In Ten H. Lai, editor, Pro. of the IEEE ICDCS Interna-

tional Workshop on Distributed Systems Veri�ation and

Validation, pages E15{E22. IEEE Computer Soiety Press,

April 2000.

[HRSV℄ Thomas Hune, Judi Romijn, Mari�elle Stoelinga,

and Frits Vaandrager. Linear parametri model heking

of timed automata. Apeted for Tools and Algorithms for

the Constrution and Analysis of Systems, 2001.

[Hun99℄ Thomas Hune. Modelling a real-time language. In

Proeedings of FMICS, 1999.

[IKL

+

00℄ Torsten K. Iversen, K�are J. Kristo�ersen, Kim G.

Larsen, Morten Laursen, Rune G. Madsen, Ste�en K.

Mortensen, Paul Pettersson, and Chris B. Thomasen.

Model-heking real-time ontrol programs | Verifying

LEGO mindstorms systems using uppaal. In Pro. of 12th

Euromiro Conferene on Real-Time Systems, pages 147{

155. IEEE Computer Soiety Press, June 2000.

[KLPW99℄ K. Kristo�ersen, K. Larsen, P. Pettersson, and

C. Weise. VHS Case Study 1 - Experimental Bath Plant

using UPPAAL. BRICS, University of Aalborg, Denmark,

May 1999.

[LBB

+

01℄ Kim G. Larsen, Gerd Behrmann, Ed Brinksma,

Ansgar Fehnker, Thomas Hune, Paul Pettersson, and Judi

Romijn. As Cheap as Possible: EÆient Cost-Optimal

Reahability for Pried Timed Automata. Submitted for

publiation., 2001.

[LNAB

+

98℄ J�rn Lind-Nielsen, Henrik Reif Andersen,

Gerd Behrmann, Henrik Hulgaard, K�are J. Kristo�ersen,

and Kim G. Larsen. Veri�ation of Large State/Event Sys-

tems Using Compositionality and Dependeny Analysis. In

Bernard Ste�en, editor, Pro. of the 4thWorkshop on Tools

and Algorithms for the Constrution and Analysis of Sys-

tems, number 1384 in Leture Notes in Computer Siene,

pages 201{216. Springer{Verlag, 1998.

[LPY97℄ Kim G. Larsen, Paul Pettersson, and Wang Yi.

Uppaal in a Nutshell. Int. Journal on Software Tools for

Tehnology Transfer, 1(1{2):134{152, Otober 1997.

[LWYP99℄ Kim G. Larsen, Carsten Weise, Wang Yi, and

Justin Pearson. Clok di�erene diagrams. Nordi Journal

of Computing, 6(3):271{298, 1999.

[Pet99℄ Paul Pettersson. Modelling and Analysis of Real-

Time Systems Using Timed Automata: Theory and Pra-

tie. PhD thesis, Department of Computer Systems, Upp-

sala University, February 1999.

[SD97℄ U. Stern and D. L. Dill. Parallelizing the Mur'

veri�er. In Orna Grumberg, editor, Pro. of the 9th Int.

Conf. on Computer Aided Veri�ation, volume 1254 of Le-

ture Notes in Computer Siene, pages 256{267. Springer{

Verlag, June 1997. Haifa, Isreal, June 22-25.

p. 6

